Health

Coffee grounds could be key to preventing neurodegenerative diseases


This article has been reviewed in accordance with Science X’s editorial process and policies. The editors have emphasized the following attributes while ensuring the credibility of the content:

verified facts

peer-reviewed publication

reliable source

reread


Credit: CC0 Public domain

× close


Credit: CC0 Public domain

Neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, affect millions of people in the United States, and the cost of caring for people with these diseases is hundreds of billions dollars each year.

Now, researchers at the University of Texas at El Paso may have found a solution in used coffee grounds, a material discarded every day in homes and businesses around the world.

A team led by Jyotish Kumar, a doctoral student in the Department of Chemistry and Biochemistry, and supervised by Mahesh Narayan, Ph.D., professor and Fellow of the Royal Society of Chemistry in the same department, discovered that caffeic acid was caffeic acid base. Carbon quantum dots (CACQDs), which can be derived from spent coffee grounds, have the potential to protect brain cells from damage caused by several neurodegenerative diseases, if the disease is triggered by factors such as obesity, l age and exposure to pesticides and others. chemicals toxic to the environment.

Their work is described in an article published in the journal Environmental research.

“Caffeic acid-based carbon quantum dots have the potential to transform the treatment of neurodegenerative disorders,” Kumar said. “That’s because none of the current treatments solve the diseases; they only help manage the symptoms. Our goal is to find a cure by addressing the atomic and molecular underpinnings that cause these diseases. ”

Neurodegenerative diseases are mainly characterized by the loss of neurons or brain cells. They inhibit a person’s ability to perform basic functions such as movement and speech, as well as more complex tasks, including bladder and bowel functions, as well as cognitive abilities.

Disorders, when in their early stages and caused by lifestyle or environmental factors, share several traits. These include high levels of free radicals (harmful molecules known to contribute to other diseases such as cancer, heart disease and vision loss) in the brain, as well as the aggregation of protein fragments forming amyloid which can lead to the formation of plaques or fibrils in the brain. the brain.

Kumar and his colleagues found that CACQDs were neuroprotective in test tube experiments, cell lines and other models of Parkinson’s disease when the disorder was caused by a pesticide called paraquat. The team observed that CACQDs were able to eliminate free radicals or prevent them from causing damage and inhibit the aggregation of amyloid protein fragments without causing significant side effects.

The team hypothesizes that in humans, at the very early stage of a disease such as Alzheimer’s or Parkinson’s disease, treatment based on CACQDs may be effective in preventing full-blown disease.

“It is essential to treat these disorders before they reach the clinical stage,” Narayan said. “At this point, it is probably too late. Current treatments that can treat advanced symptoms of neurodegenerative diseases are simply out of reach for most people. Our goal is to find a solution that can prevent most cases of neurodegenerative disease. these diseases at a given time. a manageable cost for as many patients as possible.

Caffeic acid belongs to a family of compounds called polyphenols, which are plant-based compounds known for their antioxidant or free radical scavenging properties. Caffeic acid is unique because it can penetrate the blood-brain barrier and thus exert its effects on cells inside the brain, Narayan said.

The process the team uses to extract CACQDs from used coffee grounds is considered “green chemistry,” meaning it is environmentally friendly. In their lab, the team “bakes” samples of coffee grounds at 200° for four hours to reorient the carbon structure of caffeic acid and form CACQDs. The abundance of coffee grounds is what makes the process both economical and sustainable, Narayan said.

In addition to Kumar, dozens of UTEP graduate and undergraduate students worked on this project with Narayan, including Sofia Delgado, a former UTEP undergraduate currently pursuing her doctorate. at Yale University.

Both Narayan and Kumar said they knew the finish line was still far away. But, for now, they are moving forward on a journey that could eventually lead to a drug — a pill, perhaps — that could prevent the vast majority of neurodegenerative disorders caused by factors other than genetics.

More information:
Jyotish Kumar et al, Caffeic acid recarbonization: a green chemistry and sustainable carbon nanomaterials platform to intervene in neurodegeneration induced by emerging contaminants, Environmental research (2023). DOI: 10.1016/j.envres.2023.116932

Journal information:
Environmental research

Gn Health

Not all news on the site expresses the point of view of the site, but we transmit this news automatically and translate it through programmatic technology on the site and not from a human editor.
Back to top button